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We study a class of semi-Lagrangian schemes which can be interpreted as a discrete
version of the Hopf–Lax–Oleinik representation formula for the exact viscosity so-
lution of first order evolutive Hamilton–Jacobi equations. That interpretation shows
that the scheme is potentially accurate to any prescribed order. We discuss how the
method can be implemented for convex and coercive Hamiltonians with a particular
structure and how this method can be coupled with a discrete Legendre trasform. We
also show that in one dimension, the first-order semi-Lagrangian scheme coincides
with the integration of the Godunov scheme for the corresponding conservation laws.
Several test illustrate the main features of semi-Lagrangian schemes for evolutive
Hamilton–Jacobi equations. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

We deal with a class of semi-Lagrangian schemes for evolutive Hamilton–Jacobi equation
of the first order. In particular, we consider the model problem

vt + H(∇v) = 0, in IRN × IR
(1.1)

v(x, 0) = v0(x) in IRN .

Many approximation schemes have been proposed since the paper by Kruˇzkov [26], the
most popular schemes are based on finite differences. Crandall and Lions [14] have shown
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that monotone schemes for (1.1) are at most first order. More recently other methods have
been proposed extending to Hamilton–Jacobi equations high-order methods for conser-
vation laws in order to avoid the intrinsic limitations of monotone schemes. Among those
contributions we quote the paper by Osher and Shu [32] where the technique of ENO (Essen-
tially Non-Oscillatory) schemes has been applied to Hamilton–Jacobi equation for the first
time and the more recent contributions by Jiang and Peng [25] and by Lin and Tadmor [28].

As we said, we focus our attention on a class of semi-Lagrangian (SL) methods for (1.1).
The first semi-Lagrangian method for conservation laws has been proposed by Courant–
Isaacson–Rees in [13]. Since then many other problems mainly related to fluid dynamics
and meteorological applications have been solved using SL-schemes; see, e.g., [34]. As
far as Hamilton–Jacobi equations are concerned, similar methods have been first applied
to stationary Hamilton–Jacobi–Bellman equations related to optimal control problems; see
e.g., [16, 17, 19]. In the control framework, a semi-Lagrangian scheme is obtained by
discretizing in time the dynamic programming principle and this provides an interesting
interpretation of the schemes in terms of a discrete representation formula for the value
function (see [3] and [18] for more details and additional references). The same approach
was used in [21] to solve evolutive problems with convex hamiltonians producing a first-
order scheme. High-order schemes of the same type for the pure advection problem inIRN

have been studied in [20], which contains quite an extensive analysis of their stability and
convergence properties. Just to summarize, the above mentioned SL-schemes can compute
the solution on unstructured as well as on structured grids, allow to use large time steps (at
least larger than those allowed by finite differences schemes), and may compute high-order
accurate approximations.

Although the theory has been mainly developed for first-order Hamilton–Jacobi equa-
tions, an extension to second-order problems is also possible (see [9, 10, 22, 35]).

In this paper we deal with SL-schemes related to the approximation of (1.1) which
includes the first-order model equation for tracking the evolution of an interface by the
“level set” method (see [31] and [33]). We will show how SL-schemes are strictly connected
with the Hopf representation formula for the exact solution of (1.1). This connection is
important for two main reasons. First, it shows that SL-schemes can produce arbitrarily
accurate approximations for particular classes of problems. Second, one can regard the SL
scheme for (1.1) as the analogue of Godunov scheme for conservation laws.

The paper is organized as follows. Section 2 contains the basic informations regarding
the Hopf formula for the exact solution of (1.1) and shows how the formula can be actually
computed for general convex Hamiltonians inIRN . In Section 3 we prove that inIR the
SL-scheme coincides with the integration of the solution obtained by the Godunov method
for the corresponding conservation laws. In Section 4 we present some properties of our
schemes. Finally, Section 5 is devoted to numerical experiments.

2. CONTINUOUS AND DISCRETE REPRESENTATION FORMULAE

A crucial role in the representation formula for (1.1) is played by the Legendre–Fenchel
conjugate of convex analysis which we recall here for reader’s convenience.

DEFINITION 2.1. LetH : IRN → IR be a continuous and convex function such that

H(p)

|p| → +∞ for |p| → +∞. (2.1)
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The Legendre–Fenchel conjugate ofH is the continuous and convex function,H∗, defined
by

H∗(p) ≡ sup
q∈IRN

{p× q − H(q)}. (2.2)

It is worth noting that (2.1) guarantees thatH∗(p) is always properly defined and
(H ∗(p))∗ = H(p) for any p ∈ IRN . However, as we will see later in this section, when
(2.1) is not satisfied one can still computeH∗ which will assume real values only on a
subset ofIRN .

As we will see immediately, the Legendre–Fenchel conjugate is crucial in establishing
a link between the general Cauchy problem (1.1) and a control problem. Through this link
we obtain the representation formula for the exact solution.

If the HamiltonianH satisfies the assumptions required in Definition (2.1), then we can
write Eq. (1.1) as

vt + sup
a∈IRN

{∇v × a− H ∗(a)} = 0. (2.3)

It is interesting to note (see [3], Ch. III for details) that the above equation is the Bellman
equation for a finite horizon control problem with the controls varying inA ≡ IRN , the
controlled dynamics equal to

ẏ(t) = −a(t), y(0) = x, (2.4)

and the running cost equal toH∗(a). We will denote byyx(t) the solution trajectory of (2.4)
evaluated at timet . Obviously, it will depend on the choice of the controla(·).

It is also well known that the unique viscosity solution of the Cauchy problem (1.1) is
the value function of the above control problem, i.e.,

v(x, t) = inf
a(·)∈A

[ ∫ t

0
H∗(a(s)) ds+ v0(yx(t))

]
, (2.5)

where

A ≡ {a(·) : [0, T ] → A,measurable}.

Since the optimal controls (i.e., thea∗(·) minimizing the right-hand side of (2.5)) are
constant in time, the optimal trajectories are straight lines and the optimal trajectoryy∗

starting at the pointx at time 0 is

y∗(t) = x − a∗t.

Then, substituting in (2.5) we obtain the Hopf–Lax–Oleinik representation formula

v(x, t) = inf
y∈IRN

[
v0(y)+ t H∗

(
x − y

t

)]
. (2.6)

Later in this section we will discuss some extensions of the above representation formula
to more general Hamiltonians.
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Let us examine now the typical SL-scheme. In order to simplify notations we will consider
N = 2, the extension to higher dimensions being straightforward.

Let us define the latticeL(1x,1y,1t) by

L ≡ {(xi , yj , tn) : xi = i1x, yj = j1y andtn = n1t, for i, j ∈ ZZ andn ∈ IN }, (2.7)

where(xi , yj , tn) ∈ IR2× IR+,1x and1y are the space steps, and1t is the time step. In
order to obtain the SL-scheme, let us consider the following approximation

−∇v(xi , yj , tn) · a = v(xi − a11t, yj − a21t, tn)− v(xi , yj , tn)

1t
+ O(1t). (2.8)

We will use the standard notationvn
i, j for an approximation ofv(xi , yj , tn), i, j ∈ ZZ, and

n ∈ IN andvn : IR2→ IR for its reconstruction, i.e., its extension to any triple(x, y, tn)
(see details below). Replacing in (2.3) the termvt by forward finite differences and the
directional derivative by (2.8), we get

vn+1
i, j − vn

i, j

1t
= min

a∈IR2

[
vn(xi − a11t, yj − a21t)− vn(xi , yj )

1t
+ H∗(a)

]
(2.9)

and, finally, the time explicit scheme

vn+1
i, j = min

a∈IR2

[
vn(xi − a11t, yj − a21t)+1t H∗(a)

]
. (2.10)

It is clear from (2.10) that the SL-schemes have the same structure of the representation
formula of the exact solution written forv0 = vn andt = 1t . However, several steps are
necessary in order to compute the solution. The first is to compute the value ofv on the
right-hand side by an interpolation procedure based on the values on the nodes of the lattice
L. Then, one has to determineH ∗(a) so that we can finally compute the minimum for
a ∈ IR2. Let us examine the difficulties at every step of this procedure.

The reconstruction step is not a major difficulty. One can use many types of procedures
which allow to compute the value ofv at the foot of the characteristics by the values on
the nodes of the lattice. High-order polynomial interpolations will introduce oscillations if
the solution is not regular, however, viscosity solutions are typically Lipschitz continuous
providedv0 is Lipschitz continuous. At this stage, other accurate interpolation procedures
can also be used, e.g., ENO or WENO interpolations. It is interesting to note that whenever
H∗ is known and the solution is a polynomial, the above scheme can give an approximate
solution which is accurate to any order for arbitrary choices of1t . If this is the case, the error
only depends on the interpolation step and can be canceled just choosing an interpolation
of the same order of the polynomial. The location of the foot of characteristics requires
additional work with respect to finite differences schemes. It is easy and not expensive on
structured grids when one simply divides the coordinatex (respectivelyy) by the space
discretization step1x (respectively1y) in order to determine the cell containing the foot.
This step can be more expensive on unstructured grids, particularly when the size of the
triangles is not homogeneous.

A major difficulty when applying (2.10) is computingH∗. Sometimes it is possible (see
the examples below) to determine its explicit expression, but in general one has to rely on its
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approximation by the fast Legendre transform developed by Brenier [8] and Corrias [11].
This solution is feasible as far as the state space has two or three dimensions.

The last difficulty is that the minimum should be computed on an unbounded set (in
principle, on the whole space). Despite Definition (2.10), the search for a minimum can be
reduced to a bounded set in many cases. In particular, we will show later in this section that if
H is Lipschitz continuous we can determine precise bounds for the compact set containing
the minimum point.

Let us examine some interesting cases whereH∗ is known. IfH(p) = |p|, the assumption
(2.1) is not satisfied andH∗(p) is not a real value for everyp. In fact, it is easy to prove
that

H∗(p) =
{

0, for |p| ≤ 1

+∞, elsewhere.
(2.11)

By the above definition and (2.10), we can reduce the search for the minimum to the unit
ball obtaining the following scheme

vn+1
i, j = min

a∈B(0,1)
vn(xi − a11t, yj − a21t). (2.12)

If H(p) = |p|2/2, the assumption (2.1) is satisfied andH∗(p) is real valued for everyp.
In fact, it is easy to prove thatH∗ = H . Then, the scheme is explicit in time

vn+1
i, j = min

a∈IR2

[
vn(xi − a11t, yj − a21t)+ |a|

2

2

]
. (2.13)

In this case we still have to compute the minimum over an unbounded domain. The fol-
lowing lemma shows how to determine an equivalent compact set containing the minimum
point. Its proof is analogous to the proof given in [12] for the one-dimensional case.

LEMMA 2.2. Let H : IRN → IR be continuous and convex. Moreover, let H satisfy
(2.1). Then, there exists a compact set A⊂ IRN such that

H(p) = sup
a∈IRN

{p · a− H ∗(a)} = sup
a∈A
{p · a− H ∗(a)}. (2.14)

Proof. It suffices to prove that there exists a real constantK such that the set

AK ≡ {a ∈ IRN : a · p− H∗(a) ≥ K } (2.15)

is not empty and bounded. Let us assume that|p| ≤ Mp, then

K + H ∗(a)
|a| ≤ a

|a| · p, ∀a ∈ AK , (2.16)

which implies

K + H∗(a)
|a| ≤ |p| ≤ Mp, ∀a ∈ AK . (2.17)

SinceH satisfies (2.1),AK must be bounded. Moreover,AK is nonempty since it contains
ā for K = K (ā) = −|ā|Mp − H∗(ā). j
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The argument in the above proof shows that for|p| ≤ Mp the search for the minimum
related to the computation ofH(p) can be restricted to the set

A ≡ {a ∈ IRN : aMp − H∗(p) ≥ K (0) = −H∗(0)}. (2.18)

For H(p) = |p|2/2, this gives the inequality

|a|Mp − |a|
2

2
≥ 0,

which implies

A = {a : |a| ≤ 2Mp}. (2.19)

Using similar arguments, it can also be proved that ifH is Lipschitz continuous with
constantL H , H∗(p) = +∞ for |p| > L H . This naturally implies that the search for the
minimum can be restricted to the setA = {a : |a| ≤ L H }. In our implementation the min-
imum is first approximately located by a tabulation over a finite number of points, then
precisely computed by a Powell-type algorithm (see [7] and the NETLIB routine PRAXIS).
Constraints are treated by penalization.

We conclude this section with some remarks and extensions. Let us observe first that
the same approach can be followed to deal with more general Hamiltonians of the form
H(x,∇u). In fact, if H is continuous with respect to(x,∇u), convex in∇u, and satisfies
(2.1) uniformly inx then the relation with a finite horizon control problem is still valid and the
viscosity solution of the corresponding Hamilton–Jacobi equation is still the value function.
The only difference is that the running cost is now depending onx, i.e., f (x,a) = H∗(x,a),
and this implies that characteristics are no longer straight lines.

More general representation formulae for convex HamiltoniansH(v,∇v) can be found
in [1, 5]. For nonconvex Hamiltonians the representation formula for the solution (to be
always understood in the viscosity sense) relies on the interpretation in terms of differential
games. The Hamiltonian can be written as a min–max on two parameters and the solution
is the value function of the game. The interested reader will find in [15] and [2] some
representation formulas for nonconvex hamiltonians, whereas the numerical approximation
of non-convex Hamilton–Jacobi equations related to pursuit–evasion games can be found
in the survey paper [4] (see also Remark 5.1, p. 569 in [12]).

3. EQUIVALENCE WITH GODUNOV SCHEME

We will show in this section that the SL scheme is actually a generalization of the
classical Godunov scheme for conservation laws. For this comparison to be significant,
we will restrict to the situation of small Courant numbers (so that the Godunov scheme is
stable) and useP1 reconstructions in the SL scheme (so that it can appear as the integration
of the piecewise constant reconstruction in the Godunov scheme).

Consider therefore the problem

ut + H(u)x = 0
(3.1)

u(x, 0) = u0(x),
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with x ∈ IR, t ≥ 0, H(·) smooth and convex, andu0 anL∞, compactly supported function
on IR. Consider also the associated HJ equation

vt + H(vx) = 0
(3.2)

v(x, 0) = v0(x) =
∫ x

−∞
u0(ξ) dξ.

It is well known that the viscosity solution of (3.2) is the integral of the entropic solution
of (3.1) for anyt ≥ 0, i.e.,

v(x, t) =
∫ x

−∞
u(ξ, t) dξ. (3.3)

Consider now the behavior of the classical Godunov scheme for (3.1) and of the semi-
Lagrangian scheme for (3.2), assuming that the Courant number is small enough to make
the first one stable. Defining the (piecewise constant) reconstruction operator

50[u](x) = 1

1x

∫ xj

x j−1

u(ξ, tn) dξ for anyx ∈ [xj−1, xj ) (3.4)

andū as the solution fort ≥ tn of the initial value problem

ūt + H(ū)x = 0
(3.5)

ū(tn) = u1(tn)

we have

u1(x, tn+1) = 50[ū(tn+1)](x). (3.6)

On the other hand, defining

51[v](x) = v(xj−1)+ v(xj )− v(xj−1)

1x
(x − xj−1)(x ∈ [xj−1, xj )) (3.7)

andv̄ as the solution of

v̄t + H(v̄x) = 0
(3.8)

v̄(tn) = v1(tn),

then (using the Lax–Hopf representation formula) the numerical solutionv1 of the SL
scheme for (3.2) is

v1(x, tn+1) = 51[v̄(tn+1)](x). (3.9)

If we assume that at timetn = n1t the numerical solutionsu1, v1 satisfy

v1(x, tn) =
∫ x

−∞
u1(ξ, tn) dξ, (3.10)
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by (3.3) and the definition of̄u, v̄ we obtain

v̄(x, tn+1) =
∫ x

−∞
ū(ξ, tn+1) dξ, (3.11)

and also, using the definition of51,

v1(xj , tn+1) = 51[v̄(tn+1)](xj ) = v̄(xj , tn+1)

=
∫ xj

−∞
ū(ξ, tn+1) dξ

=
j∑

k=−∞

∫ xk

xk−1

ū(ξ, tn+1) dξ

=
j∑

k=−∞

∫ xk

xk−1

u1(ξ, tn+1) dξ,

where the last equality is motivated by the definition of50. We obtain therefore

v1(xj , tn+1) =
∫ xj

−∞
u1(ξ, tn+1) dξ, (3.12)

which shows (taking into account that50 is piecewise constant and51 piecewise linear)
that (3.10) also holds at timetn+1. Then, we have proved the equivalence of the two schemes
as stated by the following.

THEOREM3.1. Let H : IR→ IR be continuous and convex and let H satisfy(2.1). Let
us denote by u1 the approximate solution of(3.1) corresponding to the Godunov method
and byv1 the approximate solution of(3.2)corresponding to the SL-scheme with piecewise
linear (P1) reconstruction. Then, for 1t/1x sufficiently small, (3.12)holds true.

4. GENERAL PROPERTIES

Although the theory of semi-Lagrangian approximation for nonlinear problems is still in-
complete, the schemes described in the preceding sections have some interesting properties
which we will briefly describe here. For simplicity, we will give the proofs inIR1.

Let us start from the local truncation error. We have∣∣v(xi , tn+1)− vn
i

∣∣ = ∣∣min
a

[v(xi − a1t, tn)+1t H∗(a)]

−min
a

[vn(xi − a1t)+1t H ∗(a)]
∣∣. (4.1)

Denoting byā1, ā2, respectively, the argmin of first and of the second term of the right-hand
side of (4.1), we obtain∣∣v(xi , tn+1)− vn

i

∣∣ ≤ max{|v(xi − ā11t, tn)− vn(xi − ā11t)|,
(4.2)|v(xi − ā21t, tn)− vn(xi − ā21t)|}.
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Assuming that the solutionv is regular andvn
i = v(xi , tn), for anyi , (4.2) implies

E1t ≡ 1

1t

∣∣v(xi , tn+1)− vn
i

∣∣ ≤ O(1xp)

1t
, (4.3)

where thep is the order of of accuracy of the space recontruction used to computevn(xi −
a1t). Note that the above estimate has just one term because our Hamiltonian depends only
on∇u. For more general Hamiltonians depending on(x,∇u), the local truncation error will
have a second term which takes into account the error in the approximation of characteristic
lines. Such a term can be obtained following the arguments in [19] and it turns out to be
O(1tq), whereq is the order of the discrete approximation used for characteristics.

As far as stability is concerned, we just recall that the schemes corresponding to aP1

space reconstruction are monotone and unconditionally stable since

‖vn+1‖1,∞ ≤ (1+ C1t)‖vn‖1,∞, (4.4)

with C = 0. For high-order reconstructions, one can prove that the same estimate holds true
with a positiveC under the restrictive assumption1x = O(1t3) (see [23]).

Once proved that the scheme is consistent, we can check that for the low-order (P1, Q1)
implementations of the scheme the convergence theory of Lin and Tadmor (see [29]) applies
since numerical solutions are uniformly semiconcave. Assume for simplicity thatN = 2,
and suppose moreover that the grid is orthogonal and uniform with step1x = 1y, and that
at then-th step the discrete semiconcavity assumption

vn
r−h,s−k − 2vn

r,s + vn
r+h,s+k ≤ C1x2 (4.5)

holds for the discrete solution at a nodexrs with an increment±(h1x, k1x) (h, k integers).
Then, at the(n+ 1)-th step we have

vn+1
i−h, j−k − 2vn+1

i, j + vn+1
i+h, j+k

= min
a

[
1t H∗(a)+ vn(xi−h, j−k + a1t)

]− 2 min
a

[
1t H∗(a)

+ vn(xi j + a1t)
]+ min

a
[1t H∗(a)+ vn(xi+h, j+k + a1t)]

≤ 1t H ∗(ā)+ vn(xi−h, j−k + ā1t)− 21t H∗(ā)− 2vn(xi j + ā1t)

+1t H ∗(ā)+ vn(xi+h, j+k + ā1t), (4.6)

where we have bounded the sum from above using asā the minimizer for the nodexi j .
Setting nowvn(xi j + ā1t) =∑l ,m λlm v

n
l ,m and recalling that theP1, Q1 reconstructions

consist of a convex combination of the values in neighboring nodes, we have thatλlm ≥ 0
and

∑
l ,m λlm = 1. By periodicity of the grid we obtain therefore

vn+1
i−h, j−k − 2vn+1

i, j + vn+1
i+h, j+k

≤
∑
l ,m

λlmv
n
l−h,m−k − 2

∑
l ,m

λlmv
n
l ,m +

∑
l ,m

λlmv
n
l+h,m+k

=
∑
l ,m

λlm
(
vn

l−h,m−k − 2vn
l ,m + vn

l+h,m+k

) ≤∑
l ,m

λlmC1x2 = C1x2. (4.7)
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Lastly, the inequality can be extended to any increment in the form considered in [29] by
convex combination.

The semiconcavity bound has been proved in [12] (see Theorem 5.2) for the one di-
mensionalP1-scheme. It is worth noting that semiconcavity plays an important role in this
problem. In the exact equation, if the initial solutionv0 is semiconcave andH∗ is regular,
then the minimization which appears in (2.6) would always be performed on a semiconcave
function resulting from the sum of two terms, one smooth and convex and the second itself
semiconcave. The evaluation of the solutionv (whose discrete counterpart is the reconstruc-
tion step) is performed at the minimum point where the solution is at least differentiable
(see [3]). Although we are only able to prove uniform discrete semiconcavity for low-order
reconstructions, numerical tests show that this property also holds, at least approximately,
in the high-order case. Then it is not surprising that the scheme may take advantage from
the uniform semiconcavity of the solution as we will show in some numerical tests.

5. NUMERICAL TESTS

Test 1. Eikonal Propagation of Fronts

The first test refers to the HJ equation

vt (x, t)+ f (x) · ∇v(x, t)+ |∇v(x, t)| = 0
(5.1)

v(x, 0) = v0(x),

where the advecting vectorfieldf has streamlines which rotate anticlockwise around the
origin.

The problem is considered in [−2, 2]2 with a 50× 50 grid. It is well known that in this
case the motion of a level curve of the viscosity solution results from the superposition of
an evolution at constant speed, and a passive advection driven by the fieldf . The initial
datav0 are chosen so as to generate the level set shown in the first picture of Fig. 1. The
following pictures show the evolution of the front, and we remark that despite the small
number of nodes, the evolution is remarkably isotropic, and singularities generated by front
collapsing do not introduce significant instabilities.

Test 2. Strictly Convex Hamiltonian

This test refers to the HJ equation:

vt (x, t)+ 1

2
|∇v(x, t)|2 = 0

(5.2)
v(x, 0) = v0(x) = max(0, 1− |x|2).

The problem is considered in [−2, 2]2. The solution of this test problem generates a singu-
larity in the gradient fort > 1/2.

The exact solution of (5.2) can be explicitly computed and fort > 1/2 it reads

v(t, x) =
{

(|x|−1)2

2t if |x| ≤ 1

0 if |x| ≥ 1.
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FIG. 1. Approximate solutions (level curves) for Test 1.

The solution, computed with1t = 0.1 and a cubic reconstruction, is shown in Fig. 2
every two time steps betweent = 0 and t = 1. Table I showsL∞ and local errors at
T = 1 (the latter being computed in a suitable smooth portion of the solution) for differ-
ent numbers of nodes on the edge of the computational domain. The error table shows
that the solution is computed with good accuracy even with a low number of nodes,
although the pointwise numerical error does not improve in smooth regions (but see
the discussion of this point after test 3). Again, we point out that the singularity in the
gradient is well resolved, and that the scheme does not introduce oscillations or other
instabilities.
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TABLE I

Numerical Errors for Test 2

Nodes L∞ error L1 error local error

25 5.75× 10−2 6.57× 10−2 5.75× 10−2

50 1.85× 10−2 2.76× 10−2 1.66× 10−2

100 6.17× 10−3 8.32× 10−3 6.17× 10−3

FIG. 2. Approximate solutions for Test 2.
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Test 3. Strictly Convex Hamiltonian with Semiconcave Initial Data

Let us consider the problem

vt (x, t)+ 1

2
|∇v(x, t)|2 = 0

(5.3)
v(x, 0) = v0(x) = max(0, |x|2− 1).

The problem is considered again in [−2, 2]2. The exact solution of this test problem reads

v(t, x) =
{ |x|2

2t+1 − 1 if |x| ≤ √2t + 1

0 if |x| ≥ √2t + 1.

Figure 3 shows the numerical solution computed fort ∈ [0, 1] with 1t = 0.1 and a cubic
reconstruction, and Table II showsL∞, L1, and local errors atT = 1. In this case, theL∞

error has the same order of magnitude as before, whereas bothL1 and local error have a
very strong improvement.

The comparison of numerical errors in tests 2 and 3 shows an interesting feature of the
scheme. The uniform semiconcavity ofv, along with the assumptions onH , heuristically
shows that the minimization step in the scheme (2.10) would be performed on a semicon-
cave function, so that the “upwind” pointxj +

∫ 1t
0 α(s) ds in which the reconstruction is

performed (which corresponds to the argmin in the scheme) can only be a regular point for
v. This results in a faster convergence in regions away from singularities, as the results of
tests 2 and 3 show.

Test 4. A Front Evolving on a Manifold

In the last test we consider the HJ equation,

vt (x, t)+ H(∇v(x, t)) = 0, x ∈ M
(5.4)

v(x, 0) = v0(x),

posed on a Riemannian manifoldM , so that the symbol∇ should now be understood as the
intrinsic gradient. In particular, the manifold is a torus in this test and we setH(p) = |p|,
so that a level curve would propagate at constant speed along geodesics.

The manifold is mapped on [−π, π ]2 with doubly periodic boundary conditions, and
Eq. (5.4) is rewritten in the planar coordinatesξ as

v(ξ, t)+ sup
β

[−β ×∇v(ξ, t)− H∗(JT (ξ) β)] = 0, ξ, β ∈ IR2, (5.5)

where againH ∗ is the Legendre transform ofH , and J is the Jacobian matrix of the
transformation mapping [−π, π ]2 into the torus ofIR3. The form (5.5) allows to treat
the Riemannian case as a straightforward adaptation of the euclidean case, whenever the
parametrization of the manifold is known. The level sets of the numerical solution are shown
in Fig. 4.
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TABLE II

Numerical Errors for Test 3

Nodes L∞ error L1 error local error

25 1.57× 10−2 2.88× 10−2 2.89× 10−6

50 4.03× 10−3 8.42× 10−4 7.36× 10−14

100 6.46× 10−4 3.29× 10−5 1.76× 10−13

FIG. 3. Approximate solutions for Test 3.
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FIG. 4. Approximate solutions (level curves) for Test 4.

REFERENCES

1. M. Bardi and L. C. Evans, On Hopf’s formulas for solutions of Hamilton–Jacobi equations,Nonlinear Anal.
8, 1373 (1984).

2. M. Bardi and S. Faggian, Hopf-type estimates and formulas for non-convex non-concave Hamilton–Jacobi
equations,SIAM J. Math. Anal.29, 1067 (1998).

3. M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman
equations (Birkh¨auser, Basel, 1997).



574 FALCONE AND FERRETTI

4. M. Bardi, M. Falcone, and P. Soravia, Numerical methods for pursuit–evasion games via viscosity solutions,
in Stochastic and Differential Games: Theory and Numerical Methodsedited by M. Bardi, T. Parthasarathy,
and T. E. S. Raghavan (Birkh¨auser, Basel, 1999).

5. M. Bardi and S. Osher, The nonconvex multidimensional Riemann problem for Hamilton–Jacobi equations,
SIAM J. Math. Anal.22, 344 (1991).

6. G. Barles, Solutions de viscosit`e des equations d’Hamilton–Jacobi (Springer-Verlag, Berlin/New York, 1998).

7. R. Brent, Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, 1973).

8. Y. Brenier, Un algorithme rapide pour le calcul de trasform´ees de Legendre–Fenchel discretes,C.R. Acad.
Sci. Paris Ser. I Math.308, 587 (1989).

9. M. Briani and M. Falcone, A semi-lagrangian scheme for advection–diffusion equations. Preprint
(2000).

10. F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes,Math.
Model. Numer. Anal.29, 97 (1995).

11. L. Corrias, Fast Legendre-Fenchel transform and applications to Hamilton–Jacobi equations and conservation
laws,SIAM J. Numer. Anal.33, 1534 (1996).

12. L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton–Jacobi
equations,Math. Comp.64, 555 (1995).

13. R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinear hyperbolic differential equations by finite
differences,Comm. Pure Appl. Math.5, 243 (1952).

14. M. G. Crandall and P. L. Lions, Two approximations of solutions of Hamilton–Jacobi equations,Math. Comput.
43, 1 (1984).

15. L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton–
Jacobi equations,Indiana Univ. Math. J.33, 773 (1984).

16. M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory,Appl. Math.
Optim.15, 1 (1987).Corrigenda in Appl. Math. Optim. 23, 213 (1991).

17. M. Falcone, The minimum time problem and its applications to front propagation, inMotion by Mean Curvature
and Related Topic(Trento, 1992, pp. 70–88; de Gruyter, Berlin, 1994).

18. M. Falcone, Numerical solution of dynamic programming equations. InOptimal Control and Viscosity Solu-
tions of Hamilton–Jacobi–Bellman Equations, App. A(Birkhäuser, Basel, 1997).
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