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We study a class of semi-Lagrangian schemes which can be interpreted as a discrete
version of the Hopf-Lax—Oleinik representation formula for the exact viscosity so-
lution of first order evolutive Hamilton—Jacobi equations. That interpretation shows
that the scheme is potentially accurate to any prescribed order. We discuss how the
method can be implemented for convex and coercive Hamiltonians with a particular
structure and how this method can be coupled with a discrete Legendre trasform. We
also show that in one dimension, the first-order semi-Lagrangian scheme coincides
with the integration of the Godunov scheme for the corresponding conservation laws.
Several test illustrate the main features of semi-Lagrangian schemes for evolutive
Hamilton—Jacobi equations. © 2002 Eisevier Science (USA)
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1. INTRODUCTION

We deal with a class of semi-Lagrangian schemes for evolutive Hamilton—Jacobi equa
of the first order. In particular, we consider the model problem

v + H(Vv) =0, in RN x IR

1.1
v(X,0) = vo(x) in IRN. (1)

Many approximation schemes have been proposed since the paperakpK[a6], the
most popular schemes are based on finite differences. Crandall and Lions [14] have st
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that monotone schemes for (1.1) are at most first order. More recently other methods |
been proposed extending to Hamilton—Jacobi equations high-order methods for con
vation laws in order to avoid the intrinsic limitations of monotone schemes. Among tho
contributions we quote the paper by Osher and Shu [32] where the technique of ENO (Es
tially Non-Oscillatory) schemes has been applied to Hamilton—Jacobi equation for the f
time and the more recent contributions by Jiang and Peng [25] and by Lin and Tadmor [

As we said, we focus our attention on a class of semi-Lagrangian (SL) methods for (1
The first semi-Lagrangian method for conservation laws has been proposed by Cour
Isaacson—Rees in [13]. Since then many other problems mainly related to fluid dynan
and meteorological applications have been solved using SL-schemes; see, e.g., [34
far as Hamilton—Jacobi equations are concerned, similar methods have been first ap
to stationary Hamilton—Jacobi—Bellman equations related to optimal control problems;
e.g., [16, 17, 19]. In the control framework, a semi-Lagrangian scheme is obtained
discretizing in time the dynamic programming principle and this provides an interesti
interpretation of the schemes in terms of a discrete representation formula for the ve
function (see [3] and [18] for more details and additional references). The same appro
was used in [21] to solve evolutive problems with convex hamiltonians producing a fir:
order scheme. High-order schemes of the same type for the pure advection proliém in
have been studied in [20], which contains quite an extensive analysis of their stability
convergence properties. Just to summarize, the above mentioned SL-schemes can cor
the solution on unstructured as well as on structured grids, allow to use large time step:
least larger than those allowed by finite differences schemes), and may compute high-c
accurate approximations.

Although the theory has been mainly developed for first-order Hamilton—Jacobi eqt
tions, an extension to second-order problems is also possible (see [9, 10, 22, 35]).

In this paper we deal with SL-schemes related to the approximation of (1.1) whi
includes the first-order model equation for tracking the evolution of an interface by t
“level set” method (see [31] and [33]). We will show how SL-schemes are strictly connect
with the Hopf representation formula for the exact solution of (1.1). This connection
important for two main reasons. First, it shows that SL-schemes can produce arbitra
accurate approximations for particular classes of problems. Second, one can regard th
scheme for (1.1) as the analogue of Godunov scheme for conservation laws.

The paper is organized as follows. Section 2 contains the basic informations regarc
the Hopf formula for the exact solution of (1.1) and shows how the formula can be actue
computed for general convex HamiltoniansIRI. In Section 3 we prove that ifR the
SL-scheme coincides with the integration of the solution obtained by the Godunov mett
for the corresponding conservation laws. In Section 4 we present some properties of
schemes. Finally, Section 5 is devoted to numerical experiments.

2. CONTINUOUS AND DISCRETE REPRESENTATION FORMULAE

A crucial role in the representation formula for (1.1) is played by the Legendre—Fencl
conjugate of convex analysis which we recall here for reader’s convenience.

DEFINITION 2.1. LetH : RN — IR be a continuous and convex function such that

H(p)

D — 4oo for|p| = +o0. (2.1)
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The Legendre—Fenchel conjugatetbis the continuous and convex functida;, defined
by

H*(p) = sup{p xq— H(@)}. (2.2)
gelRN

It is worth noting that (2.1) guarantees thidt*(p) is always properly defined and
(H*(p))* = H(p) for any p € RN. However, as we will see later in this section, when
(2.1) is not satisfied one can still compute* which will assume real values only on a
subset ofRN.

As we will see immediately, the Legendre—Fenchel conjugate is crucial in establish
a link between the general Cauchy problem (1.1) and a control problem. Through this |
we obtain the representation formula for the exact solution.

If the HamiltonianH satisfies the assumptions required in Definition (2.1), then we ce
write Eqg. (1.1) as

v+ sup{Vv xa— H*@)}=0. (2.3)

acRN

Itis interesting to note (see [3], Ch. lIl for details) that the above equation is the Bellm
equation for a finite horizon control problem with the controls varyinghies IRN, the
controlled dynamics equal to

yit) =-a), y0 =x, (2.4)

and the running cost equal kb* (a). We will denote byy (t) the solution trajectory of (2.4)
evaluated at timé. Obviously, it will depend on the choice of the contadl).

It is also well known that the unique viscosity solution of the Cauchy problem (1.1)
the value function of the above control problem, i.e.,

t
v(X,t) = inf {/ H*@(s)) ds+ vo(yx(t)) |, (2.5)
a(eA 0
where
A={a():[0,T] — A, measurable
Since the optimal controls (i.e., tte&(-) minimizing the right-hand side of (2.5)) are
constant in time, the optimal trajectories are straight lines and the optimal trajgctory
starting at the poink at time O is
y*(t) = x — a*t.

Then, substituting in (2.5) we obtain the Hopf-Lax—Oleinik representation formula

v, 1) = inf {vo(y) +tH*<u>} (2.6)
yeRN t

Later in this section we will discuss some extensions of the above representation forn
to more general Hamiltonians.
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Letus examine now the typical SL-scheme. In order to simplify notations we will consid
N = 2, the extension to higher dimensions being straightforward.
Let us define the lattice (AXx, Ay, At) by

L={(, Y, th):x =iAX,y; = jAy andt, = nAt,fori, j € Z andn € IN}, (2.7)

where(x, yj, tn) € IR? x IR,, Ax andAy are the space steps, and is the time step. In
order to obtain the SL-scheme, let us consider the following approximation

v(Xp — a1 At, yj — @At ty) — v(X;, Yj, th)
At

—Vu(X, yj,th) -a= + O(A1). (2.8)

We will use the standard notatiefi; for an approximation o (x;, y;, tn),i, j € ZZ, and
ne N andv” : IR?> - IR for its reconstruction, i.e., its extension to any trigle y, t,)
(see details below). Replacing in (2.3) the tewby forward finite differences and the
directional derivative by (2.8), we get

Uirj-]_‘rl — Uirjj — min V(X — a1 At, yj — aAt) — v (X, i) 4 H*a) 2.9)
At aciR? At '
and, finally, the time explicit scheme
't = min [0"(x — a1At, yj — aAt) + AtH*(@)]. (2.10)

aclR?

Itis clear from (2.10) that the SL-schemes have the same structure of the represent:
formula of the exact solution written fap = v" andt = At. However, several steps are
necessary in order to compute the solution. The first is to compute the valuerothe
right-hand side by an interpolation procedure based on the values on the nodes of the Ig
L. Then, one has to determirté*(a) so that we can finally compute the minimum for
a € IR2. Let us examine the difficulties at every step of this procedure.

The reconstruction step is not a major difficulty. One can use many types of procedt
which allow to compute the value of at the foot of the characteristics by the values or
the nodes of the lattice. High-order polynomial interpolations will introduce oscillations
the solution is not regular, however, viscosity solutions are typically Lipschitz continuo
provideduyg is Lipschitz continuous. At this stage, other accurate interpolation procedut
can also be used, e.g., ENO or WENO interpolations. It is interesting to note that whene
H* is known and the solution is a polynomial, the above scheme can give an approxin
solutionwhich is accurate to any order for arbitrary choicestoff this is the case, the error
only depends on the interpolation step and can be canceled just choosing an interpol:
of the same order of the polynomial. The location of the foot of characteristics requi
additional work with respect to finite differences schemes. It is easy and not expensive
structured grids when one simply divides the coordinafeespectivelyy) by the space
discretization stephx (respectivelyAy) in order to determine the cell containing the foot.
This step can be more expensive on unstructured grids, particularly when the size of
triangles is not homogeneous.

A major difficulty when applying (2.10) is computing*. Sometimes it is possible (see
the examples below) to determine its explicit expression, but in general one has to rely o
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approximation by the fast Legendre transform developed by Brenier [8] and Corrias [1
This solution is feasible as far as the state space has two or three dimensions.

The last difficulty is that the minimum should be computed on an unbounded set
principle, on the whole space). Despite Definition (2.10), the search for a minimum can
reduced to abounded setin many cases. In particular, we will show later in this section th
H is Lipschitz continuous we can determine precise bounds for the compact set contai
the minimum point.

Letus examine some interesting cases wiitres known. IfH (p) = | p|, the assumption
(2.1) is not satisfied anti*(p) is not a real value for everp. In fact, it is easy to prove
that

0, for|p/ <1

(2.11)
400, elsewhere

H*(p) = {
By the above definition and (2.10), we can reduce the search for the minimum to the 1
ball obtaining the following scheme

v;jjﬂ = ae'?fc?l) V(X — aAt, yj — aAt). (2.12)
If H(p) = |p|?/2, the assumption (2.1) is satisfied and(p) is real valued for every.
In fact, it is easy to prove thai* = H. Then, the scheme is explicit in time
- Ll
= min [v" (X —a1At, yj — aAt) + > | (2.13)

aclR?

n+1

Ui, j

In this case we still have to compute the minimum over an unbounded domain. The
lowing lemma shows how to determine an equivalent compact set containing the minim
point. Its proof is analogous to the proof given in [12] for the one-dimensional case.

LEMMA 2.2. Let H: RN — IR be continuous and convex. Moreavkst H satisfy
(2.1). Then there exists a compact set@ IRN such that

H(p) = sup{p-a— H*@)} =supgp-a— H*@)}. (2.14)

acRN acA

Proof. It suffices to prove that there exists a real constamstich that the set
Ak ={aeRV:a.-p—H*@) > K} (2.15)
is not empty and bounded. Let us assume fthat My, then

K+ H*@) a
—— < —.p, Vae A, 2.16
al =l p K ( )

which implies

K+ H*@)

A S IPI=Mp VaeAc (2.17)

SinceH satisfies (2.1)Ax must be bounded. Moreoveky is nonempty since it contains
aforK =K@ = —lalMp — H*(@). ®
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The argument in the above proof shows that|for< M, the search for the minimum
related to the computation &f (p) can be restricted to the set

A=fae RN :aM, — H*(p) = K(0) = —H*(0)}. (2.18)
For H(p) = |p|?/2, this gives the inequality

|a?

|a|Mp—7 >0,

which implies
A={a:a] <2My}. (2.19)

Using similar arguments, it can also be proved thatlifs Lipschitz continuous with
constantL 4, H*(p) = 400 for |p| > Ly. This naturally implies that the search for the
minimum can be restricted to the s&t= {a : |a| < Ly}. In our implementation the min-
imum is first approximately located by a tabulation over a finite number of points, th
precisely computed by a Powell-type algorithm (see [7] and the NETLIB routine PRAXIS
Constraints are treated by penalization.

We conclude this section with some remarks and extensions. Let us observe first
the same approach can be followed to deal with more general Hamiltonians of the fc
H(x, Vu). In fact, if H is continuous with respect tx, Vu), convex inVu, and satisfies
(2.1) uniformly inx then the relation with a finite horizon control problem is still valid and the
viscosity solution of the corresponding Hamilton—Jacobi equation is still the value functic
The only difference is that the running costis now depending ae., f (x, a) = H*(x, a),
and this implies that characteristics are no longer straight lines.

More general representation formulae for convex Hamiltonkdis, Vv) can be found
in [1, 5]. For nonconvex Hamiltonians the representation formula for the solution (to |
always understood in the viscosity sense) relies on the interpretation in terms of differer
games. The Hamiltonian can be written as a min—max on two parameters and the solL
is the value function of the game. The interested reader will find in [15] and [2] son
representation formulas for nonconvex hamiltonians, whereas the numerical approxima
of non-convex Hamilton—Jacobi equations related to pursuit—evasion games can be fc
in the survey paper [4] (see also Remark 5.1, p. 569 in [12]).

3. EQUIVALENCE WITH GODUNQV SCHEME

We will show in this section that the SL scheme is actually a generalization of tl
classical Godunov scheme for conservation laws. For this comparison to be signific:
we will restrict to the situation of small Courant numbers (so that the Godunov schemg
stable) and us®; reconstructions in the SL scheme (so that it can appear as the integrat
of the piecewise constant reconstruction in the Godunov scheme).

Consider therefore the problem

Ut+H(U)x=O

u(x, 0) = up(X), (3:1)
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withx € R, t > 0, H(-) smooth and convex, ang anL >, compactly supported function
on IR. Consider also the associated HJ equation

v+ H(vy) =0

M 3.2
v(x, 0) = vo(xX) = / Uo () d&.

Itis well known that the viscosity solution of (3.2) is the integral of the entropic solutio
of (3.1) foranyt > 0, i.e.,

V(X t) = /X u(&, t) de. (3.3)

Consider now the behavior of the classical Godunov scheme for (3.1) and of the se
Lagrangian scheme for (3.2), assuming that the Courant number is small enough to n
the first one stable. Defining the (piecewise constant) reconstruction operator

1 [
Mo[u](x) = Ax / u(g, ty) dé  foranyx e [Xj_1, Xj) (3.4

andu as the solution fot > t, of the initial value problem

Ui+ H(Wx =0 (3.5)
U(tn) = UA(tn)
we have
Ua(X, thi1) = Ho[U(tn+1)]1(X). (3.6)

On the other hand, defining

v(Xj) — v(Xj_1)

M1 [v](X) = v(Xj_1) + Ax

(X = Xj_1)(X € [Xj_1, X)) (3.7
andv as the solution of

v+ H@w) =0

_ 3.8
v(th) = va(th), (38)

then (using the Lax—Hopf representation formula) the numerical solutioof the SL
scheme for (3.2) is

va(X, thyr) = Ma[v(tar)](X). (3.9)

If we assume that at timig = nAt the numerical solutions,, v, satisfy

va(K, ) = / Un (& ) dE, (3.10)

o0
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by (3.3) and the definition af, v we obtain

v(X, thy1) = / (&, thyy) &, (3.11)

[e¢]

and also, using the definition of;,

va(Xj, i) = Ma[v(ths D] (X)) = v(Xj, thy1)

- / Lty dE

[e¢]

] Xk
= / U(E, thy1) dE

k=—o00 ¥ %k-1

i X¢
SO ARCEED

k=—o00

where the last equality is motivated by the definitiorThf. We obtain therefore

va(K; . thas) = / " UaE thre) e, (3.12)

[ee]

which shows (taking into account thEt is piecewise constant arid; piecewise linear)
that (3.10) also holds at tintg, ;. Then, we have proved the equivalence of the two scheme
as stated by the following.

THEOREM3.1. Let H: IR — IR be continuous and convex and let H sat{gyl). Let
us denote by y the approximate solution @B.1) corresponding to the Godunov method
and byv, the approximate solution §8.2)corresponding to the SL-scheme with piecewise
linear (Pp) reconstruction. Therfor At/Ax sufficiently smajl(3.12)holds true.

4. GENERAL PROPERTIES

Although the theory of semi-Lagrangian approximation for nonlinear problems is still i
complete, the schemes described in the preceding sections have some interesting prop
which we will briefly describe here. For simplicity, we will give the proofsit.

Let us start from the local truncation error. We have

lv(Xi, thn) — o' = \main[v(xi —aAt, ty) + AtH*(a)]
— main[v”(xi —aAt) + AtH*(@)]|. (4.1)

Denoting bya;, ap, respectively, the argmin of first and of the second term of the right-har
side of (4.1), we obtain

[v(Xi, ths) — o' < maxX{|v(x — &AL, ty) — 0" (X — @ Ab)],

. C 4.2)
lv(X —apAt, t,) — " (X — apAt)]}.



SEMI-LAGRANGIAN SCHEMES 567

Assuming that the solutionis regular and" = v(x;, t,), for anyi, (4.2) implies

O(AXP)

1 n
Eat = E|U(Xi,tn+1) — | = At

4.3)
where thep is the order of of accuracy of the space recontruction used to compie—
aAt). Note that the above estimate has just one term because our Hamiltonian depends
onVu. For more general Hamiltonians dependingenvu), the local truncation error will
have a second term which takes into account the error in the approximation of character
lines. Such a term can be obtained following the arguments in [19] and it turns out to
0O(AtY), whereq is the order of the discrete approximation used for characteristics.

As far as stability is concerned, we just recall that the schemes correspondirig to &
space reconstruction are monotone and unconditionally stable since

V" 100 < (14 CAD ™| 100, (4.4)

with C = 0. For high-order reconstructions, one can prove that the same estimate holds
with a positiveC under the restrictive assumptidrx = O(At®) (see [23]).

Once proved that the scheme is consistent, we can check that for the low-erdex
implementations of the scheme the convergence theory of Lin and Tadmor (see [29]) apj
since numerical solutions are uniformly semiconcave. Assume for simplicity\that2,
and suppose moreover that the grid is orthogonal and uniform withhstep Ay, and that
at then-th step the discrete semiconcavity assumption

Uhsk — 2Vrs T Vryhsik < CAxX? (4.5)

holds for the discrete solution at a nadewith an incrementt (hAx, kAx) (h, kintegers).
Then, at thgn + 1)-th step we have

Uilﬁhhl,jfk - Zvin.}rl + Uin:hl,j+k
= main [AtH*(@) + v"(Xi_p,j—k + aAt)] — 2 n;in[AtH*(a)
+0"(xj +aAt)] + main[AtH*(a) + 0" (Xi4h, j+k + aAL)]
< AtH*(a) + Un(Xi,h,j,k +aAt) — 2AtH* @) — 2Un(Xij + aAt)
+ AtH*(@) + v“(xi+h,j+k + aAt), (4.6)

where we have bounded the sum from above using te minimizer for the node; .
Setting nowv"(xj +aAt) =37, . Aim vy, and recalling that thé;, Q reconstructions
consist of a convex combination of the values in neighboring nodes, we havethat0
and)_, ,, Aim = 1. By periodicity of the grid we obtain therefore

n+1 n+1 n+1
Uilhj—k — 2] F Vidh 4k

n n n
= E MmVipmk — 2 E MmVj m + E MmUith mik
I,m I,m I,m

=> im0 hmk = 207+ Vhmk) < D AMmCAX® =CAXZ. (4.7)
I,m

I,m



568 FALCONE AND FERRETTI

Lastly, the inequality can be extended to any increment in the form considered in [29]
convex combination.

The semiconcavity bound has been proved in [12] (see Theorem 5.2) for the one
mensionalP;-scheme. It is worth noting that semiconcavity plays an important role in th
problem. In the exact equation, if the initial solutiogis semiconcave anH* is regular,
then the minimization which appears in (2.6) would always be performed on a semiconc
function resulting from the sum of two terms, one smooth and convex and the second it
semiconcave. The evaluation of the solutiqavhose discrete counterpart is the reconstruc
tion step) is performed at the minimum point where the solution is at least differential
(see [3]). Although we are only able to prove uniform discrete semiconcavity for low-ord
reconstructions, numerical tests show that this property also holds, at least approxima
in the high-order case. Then it is not surprising that the scheme may take advantage f
the uniform semiconcavity of the solution as we will show in some numerical tests.

5. NUMERICAL TESTS

Test 1. Eikonal Propagation of Fronts

The first test refers to the HJ equation

(X, 1)+ f(X)- Vox,t) + |[Vu(x,t)| =0 (5.1)
v(X, 0) = vg(X), '

where the advecting vectorfielfl has streamlines which rotate anticlockwise around th
origin.

The problem is considered in-R, 2]* with a 50x 50 grid. It is well known that in this
case the motion of a level curve of the viscosity solution results from the superposition
an evolution at constant speed, and a passive advection driven by thé fi€lk initial
datavg are chosen so as to generate the level set shown in the first picture of Fig. 1. -
following pictures show the evolution of the front, and we remark that despite the sm
number of nodes, the evolution is remarkably isotropic, and singularities generated by fr
collapsing do not introduce significant instabilities.

Test 2. Strictly Convex Hamiltonian

This test refers to the HJ equation:

v (X, t) + }|Vv(x, t)>=0
2 (5.2)
v(X, 0) = vo(X) = max(0, 1 — |x|?).

The problem is considered ir-R, 2]2. The solution of this test problem generates a singu
larity in the gradient fot > 1/2.
The exact solution of (5.2) can be explicitly computed and ferl/2 it reads

(x|=D2
ot 3) = o |-f x| <1
0 if |x] > 1.
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FIG. 1. Approximate solutions (level curves) for Test 1.

The solution, computed wittAt = 0.1 and a cubic reconstruction, is shown in Fig. 2
every two time steps betwedn= 0 andt = 1. Table | showsL*> and local errors at
T = 1 (the latter being computed in a suitable smooth portion of the solution) for diffe
ent numbers of nodes on the edge of the computational domain. The error table sh
that the solution is computed with good accuracy even with a low number of nod
although the pointwise numerical error does not improve in smooth regions (but
the discussion of this point after test 3). Again, we point out that the singularity in tl
gradient is well resolved, and that the scheme does not introduce oscillations or o
instabilities.
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TABLE |
Numerical Errors for Test 2
Nodes L*> error L error local error
25 575x 1072 6.57 x 1072 5.75x 1072
50 185 x 1072 2.76 x 1072 1.66 x 102
100 617 x 102 8.32x 1073 6.17 x 1073
'DATO_INIZIALE. —— fort.202 ——

N

/N

A
A

fort.204 —— ‘fort.206° ——

fort.208" —— fort.210) ——

FIG. 2. Approximate solutions for Test 2.
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Test 3. Strictly Convex Hamiltonian with Semiconcave Initial Data

Let us consider the problem

(X, t) + }IVU(X, D?=0
2 (5.3)
v(X, 0) = vo(X) = max, |x|*> — 1).

The problem is considered again inZ, 2]°. The exact solution of this test problem reads

g
u(t, x) = { 2+1 !f IX| < v/2t+1
0 if [X] > 2T+ L.

Figure 3 shows the numerical solution computedtfar[0, 1] with At = 0.1 and a cubic
reconstruction, and Table Il shows®, L, and local errors af = 1. In this case, th& >
error has the same order of magnitude as before, wheread bathd local error have a
very strong improvement.

The comparison of numerical errors in tests 2 and 3 shows an interesting feature of
scheme. The uniform semiconcavity @falong with the assumptions dth, heuristically
shows that the minimization step in the scheme (2.10) would be performed on a semit
cave function, so that the “upwind” poist + [ «(s) ds in which the reconstruction is
performed (which corresponds to the argmin in the scheme) can only be a regular poin
v. This results in a faster convergence in regions away from singularities, as the result
tests 2 and 3 show.

Test 4. A Front Evolving on a Manifold

In the last test we consider the HJ equation,

(X, 1)+ HVu(x,t)) =0, xe M (5.4)
v(X, 0) = vo(X),
posed on a Riemannian manifdidl, so that the symbd¥ should now be understood as the
intrinsic gradient. In particular, the manifold is a torus in this test and wélge) = | p|,
so that a level curve would propagate at constant speed along geodesics.
The manifold is mapped on-r, 7] with doubly periodic boundary conditions, and
Eq. (5.4) is rewritten in the planar coordinateas

v(E, 1) +sud—B x Vu(E, 1) —H*QAT () Bl =0, & e R (5.5)
B

where againH* is the Legendre transform dfi, and J is the Jacobian matrix of the
transformation mapping-{r, 7]? into the torus ofIR3. The form (5.5) allows to treat
the Riemannian case as a straightforward adaptation of the euclidean case, wheneve
parametrization of the manifold is known. The level sets of the numerical solution are shc
in Fig. 4.
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TABLE 1l
Numerical Errors for Test 3
Nodes L error L error local error
25 157 x 102 2.88x 1072 2.89x 10°°
50 403 x 1073 8.42x 10 7.36x 10
100 646 x 10 3.29x 10°° 1.76 x 10°*3
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FIG. 3. Approximate solutions for Test 3.
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FIG. 4. Approximate solutions (level curves) for Test 4.
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